Dysregulation of the glutamine transporter Slc38a3 (SNAT3) and ammoniagenic enzymes in obese, glucose-intolerant mice.
نویسندگان
چکیده
BACKGROUND/AIMS Uric acid nephrolithiasis is prevalent among patients with type 2 diabetes and metabolic syndrome; it is correlated with an acidic urine and lower urinary ammonium excretion and is likely associated with insulin resistance. Insulin stimulates ammoniagenesis in renal cell lines via increased phosphate-dependent glutaminase (PDG) activity and glutamine metabolism. Ammonium excretion into the proximal tubule is mediated at least in part by the Na(+)/H(+)-exchanger NHE3 and in the collecting duct involving the Rhesus protein RhCG. Here we tested, whether obesity and insulin resistance in a diet-induced mouse model could contribute to deranged ammonium excretion. METHODS Obesity was induced by diet in mice and the impact on key molecules of proximal tubular ammoniagenesis and urinary acid excretion tested. RESULTS Diet-induced obesity was confirmed by pathological intraperitoneal glucose tolerance tests (IPGTT). Three groups of mice were compared: control mice; obese, glucose-intolerant with abnormal IPGTT (O-GI); or moderate weight with normal IPGTT (Non-Responders, NR). Basal urinary ammonium excretion did not differ among groups. However, acid loading increased urinary ammonium excretion in all groups, but to a lesser extent in the O-GI group. SNAT3 mRNA expression was enhanced in both obese groups. PDG expression was elevated only in acid-loaded O-GI mice, whereas PEPCK was enhanced in both O-GI and NR groups given NH4CI. NHE activity in the brush border membrane of the proximal tubule was strongly reduced in the O-GI group whereas RhCG expression was similar. CONCLUSION In sum, obesity and glucose intolerance impairs renal ammonium excretion in response to NH4CI feeding most likely through reduced NHE activity. The stimulation of SNAT3 and ammoniagenic enzyme expression may be compensatory but futile.
منابع مشابه
Enzymatic Suppression of the Membrane Conductance Associated with the Glutamine Transporter SNAT3 Expressed in Xenopus Oocytes by Carbonic Anhydrase II
The transport activity of the glutamine/neutral amino acid transporter SNAT3 (former SN1, SLC38A3), expressed in oocytes of the frog Xenopus laevis is associated with a non-stoichiometrical membrane conductance selective for Na(+) and/or H(+) (Schneider, H.P., S. Bröer, A. Bröer, and J.W. Deitmer. 2007. J. Biol. Chem. 282:3788-3798). When we expressed SNAT3 in frog oocytes, the glutamine-induce...
متن کاملGlucocorticoids have a role in renal cortical expression of the SNAT3 glutamine transporter during chronic metabolic acidosis.
Glucocorticoids are involved in many aspects of regulation of acid-base homeostasis, including the stimulation of renal ammoniagenesis during chronic metabolic acidosis. Plasma glutamine is the principal substrate for ammoniagenesis under these conditions. Expression of the System N glutamine transporter SNAT3 is increased in the renal proximal tubules during acidosis. In vivo studies in rats u...
متن کاملExpression of Glutamine Transporter Slc38a3 (SNAT3) During Acidosis is Mediated by a Different Mechanism than Tissue-Specific Expression
BACKGROUND Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. METHODS Slc38a3 promoter activity and messenger RNA stability were measured in cu...
متن کاملPotassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney.
Kidneys produce ammonium to buffer and excrete acids through metabolism of glutamine. Expression of the glutamine transporter Slc38a3 (SNAT3) increases in kidney during metabolic acidosis (MA), suggesting a role during ammoniagenesis. Potassium depletion and high dietary protein intake are known to elevate renal ammonium excretion. In this study, we examined SNAT3, phosphate-dependent glutamina...
متن کاملRegulation of renal amino acid transporters during metabolic acidosis.
The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 34 2 شماره
صفحات -
تاریخ انتشار 2014